Head Injury (Traumatic Brain Injury)

Kevin Badgley
Paramedic, EMS I/C

Introduction to Head and Traumatic Brain Injuries

- Common major trauma
- 4 million people experience head trauma annually
 - Severe head injury is most frequent cause of trauma death
- At-risk population:
 - Males 15-24
 - Infants
 - Young children
 - Elderly

Introduction to Head and Traumatic Brain Injuries

- Injury Prevention Programs
 - Motorcycle safety
 - Helmet use decreased serious head injury by 50%
 - Bicycle safety
 - Helmet and head injury awareness programs
 - Sports
 - Football
 - Rollerblading
 - Contact sports

Anatomy and Physiology of the Head and Face

- Scalp
- Cranium
- Meninges
- Cerebrospinal fluid
- Brain
- CNS circulation
- Blood-brain barrier
- Cerebral perfusion pressure
- Cranial nerves
- Ascending reticular activating system
Anatomy and Physiology of the Head

- **Scalp**
 - Strong flexible mass of:
 - Skin
 - Fascia
 - Muscular tissue
 - Highly vascular

Anatomy and Physiology of the Head

- **Skull**
 - Facial bones
 - Cranium
 - Vault for the brain
 - Strong, light, rigid, spherical bone
 - Unyielding to increased intracranial pressure (ICP)

Anatomy and Physiology of the Head

- **Meninges**
 - Protective mechanism for the CNS
 - Dura Mater
 - Layers
 - Outer: Cranium’s inner periosteum
 - Inner: Dural layer
 - Forms partial structural divisions
 - Falx cerebri
 - Tentorium cerebelli
 - Large arteries above
 - Provide blood flow to the surface of the brain

Anatomy and Physiology of the Head

- **Meninges**
 - Arachnoid Membrane
 - “Spider-like”
 - Covers inner dura
 - Suspends brain in cranial cavity
 - Collagen and elastin fibers
 - Subarachnoid space beneath
 - CSF
 - Cushions brain
 - Pia Mater
 - Closest to brain and spinal cord
 - Covers all areas of brain and spinal cord
 - Very vascular

- **Galea aponeurotica**
 - Between scalp and skull
 - Fibrous connective sheath
 - Subaponeurotica (areolar) tissue
 - Permits venous blood flow from the dural sinuses to the venous vessels of scalp
 - Emissary veins: Potential route for infection

- **Falx cerebri**
 - Unyielding to increased intracranial pressure (ICP)

- **Fascia**
 - Vault for the brain
 - Muscular tissue
 - Inner: Dural layer
 - Fibrous connective sheath
 - Suspends brain in cranial cavity
Anatomy and Physiology of the Head

The Meninges and Skull

- Cerebrospinal Fluid
 - Clear, colorless fluid
 - Comprised of water, protein, and salts
 - Made in largest two ventricles of brain
 - Cushions CNS
 - Medium for nutrients and waste products to diffuse into and out of brain

- Brain
 - Occupies 80% of cranium
 - Comprised of 3 major structures
 - Cerebrum
 - Cerebellum
 - Brainstem
 - High metabolic rate
 - If blood supply stops:
 - Unconscious within 10 seconds
 - Irreversible damage in 4-6 minutes

- Cerebrum
 - Function
 - Center of conscious thought, personality, speech, and motor control
 - Visual, auditory, and tactile perception
 - Lobes
 - Frontal
 - Parietal
 - Occipital
 - Temporal
 - Memory and emotion
 - Motor and sensory activity
 - Hearing, speech, taste, and smell
 - Lobes
 - Frontal
 - Personality
 - Parietal
 - Motor and sensory activity
 - Occipital
 - Temporal
 - Long-term memory
 - Sensory

- Cerebrum
 - Falx Cerebri
 - Divides cerebrum into right and left hemispheres
 - Central Sulcus
 - Fissure splits cerebrum into right and left hemispheres
 - Tentorium
 - Fibrous sheet within occipital region
 - Brainstem perforates through incisura tentorii cerebelli
 - Oculomotor nerve (CN-III) travels along
 - Controls pupil size
 - Compression results in pupillary disturbances

Anatomy and Physiology of the Head

The Brain

- Cerebrum
 - Falx Cerebri
 - Central Sulcus
 - Tentorium
 - Brainstem perforates through incisura tentorii cerebelli
 - Oculomotor nerve (CN-III) travels along
Anatomy and Physiology of the Head

Cerebrum
- Hemisphere Functions
- Left side is dominant
 - Mathematical computations
 - Writing
 - Language interpretation
 - Speech
- Right
 - Non-verbal imagery

Cerebellum
- Located under tentorium
- Function
 - "Fine tunes" motor control
 - Allows smooth movement
 - Balance
 - Maintenance of muscle tone

Brainstem
- Central processing center
- Communication junction among
 - Cerebrum
 - Spinal cord
 - Cranial nerves
 - Cerebellum
- Structures
 - Midbrain
 - Pons
 - Medulla oblongata

Midbrain
- Upper portion of brainstem
- Structures
 - Hypothalamus
 - Endocrine function, vomiting reflex, hunger, thirst
 - Kidney function, body temperature, emotion
 - Thalamus
 - Switching center between pons and cerebrum
 - Critical Element in Ascending Reticular Activating System (A-RAS)
 - Major pathways for optic and olfactory nerves
 - Associated structures

Pons
- Communication interchange between cerebellum, cerebrum, midbrain, and spinal cord
- Bulb-shaped structure above medulla
- Sleeping phase of the RAS

Medulla Oblongata
- Bulge in the top of the spinal cord
- Centers
 - Respiratory Center
 - Controls depth, rate, and rhythm
 - Cardiac Center
 - Regulates rate and strength of cardiac contractions
 - Vasomotor Center
 - Distribution of blood
 - Maintains blood pressure
Anatomy and Physiology of the Head

- CNS Circulation
 - Arterial
 - Four Major Arteries
 - 2 Internal Carotid Arteries
 - 2 Vertebral Arteries
 - Circle of Willis
 - Internal Carotids and Vertebral Arteries
 - Circle the base of the brain
 - Venous
 - Venous drainage occurs through bridging veins
 - that drain surface of the cerebrum
 - Bridge with the dural sinuses
 - Drain into internal jugular veins

- Mean Arterial Pressure (MAP)
 - MAP = DBP + 1/3 Pulse Pressure

- Cerebral Perfusion Pressure
 - Pressure within cranium (ICP) resists blood flow and good perfusion to the CNS
 - Pressure usually less than 10 mmHg
 - Mean Arterial Pressure (MAP)
 - Must be at least 50 mmHg to ensure adequate perfusion
 - MAP = DBP + 1/3 Pulse Pressure
 - Cerebral Perfusion Pressure (CPP)
 - Pressure moving blood through the cranium
 - CPP = MAP – ICP

- Ascending Reticular Activation System
 - Tract of neurons in upper brainstem, pons, and midbrain
 - Responsible for sleep–wake cycle
 - Monitors input stimulation
 - Regulates body functions
 - Respiration
 - Heart rate
 - Peripheral vascular resistance

- Blood–Brain Barrier
 - Less permeable than elsewhere in body
 - Does not allow flow of interstitial proteins
 - Hormones and other circulating substances have no effect on the CNS
 - Reduced lymphatic flow
 - Very protected environment

- Cranial Nerves
 - 12 pair with distinct pathways
 - Senses, facial innervation, and body function control

- Nerves
 - Trigeminal (CN–V)
 - Facial sensation
 - Some eye motor control
 - Enables chewing process
 - Facial (CN–VII)
 - Motor control for facial muscles
 - Sensation of taste
Anatomy and Physiology of the Face
- Cranial Nerves
 - CN-XII (Hypoglossal)
 - CN-IX (Glossopharyngeal)
- Eye
 - Innervation
 - CN-III (Oculomotor)
 - Conjugate movement
 - CN-V (Trigeminal)
 - Movement of eyes together
 - CN-IV (Trochlear)
 - Downward and inward movement
 - CN-VI (Abducens)
 - Abduction (outward) gaze

Anatomy and Physiology of the Neck
- Jugular Veins
 - External
 - Superficial, lateral to the trachea
 - Internal
 - Sheath with the carotid artery and vagus nerve
- Esophagus
- Cranial Nerves
 - CN-IX (Glossopharyngeal)
 - Carotid bodies and carotid sinuses
 - CN-X
 - Speech, swallowing, cardiac, respiratory, and visceral function
- Thoracic Duct
 - Delivers lymph to the venous system

Pathophysiology of Head, Facial, and Neck Injury
- Difficult to assess in the prehospital setting
- Commonly threaten life
- May expose victims to lifelong disability
Head Injury
- Defined as a traumatic insult to the cranial region
 - Result in injury to soft tissues, bony structures, and the brain
 - Should separate “Head Injury” from “Traumatic Brain Injury”
 - Head Injury is not specific enough term

Scalp Injury
- Common Injuries
 - Contusions
 - Lacerations
 - Avulsions
- Significant hemorrhage may occur
- Reconsider MOI for severe underlying problems

Cranial Injury
- The skull does not fracture unless trauma is extreme
- Types
 - Linear
 - Most common
 - Depressed
 - Comminuted
 - Basilar

Cranial Injury
- Basilar Skull Fracture
 - Common type of skull fracture
 - Signs of basilar skull fracture vary with the injury’s location
 - May permit cerebrospinal fluid to seep out

Traumatic Brain Injury
- “A traumatic insult to the brain capable of producing physical, intellectual, emotional, social, and vocational changes.”
 - National Head Injury Foundation
- Classification
 - Direct
 - Indirect

Direct Brain Injury
- Caused by the forces of trauma and can be associated with a variety of mechanisms
 - Coup
 - Contrecoup
Coup-Contrecoup Injury

Direct Brain Injury Categories
- Focal
 - Occur at a specific location in brain
 - Cerebral contusion
 - Intracranial hemorrhage
 - Epidural hematoma
 - Subdural hematoma
 - Intracerebral hemorrhage
- Diffuse
 - Concussion
 - Moderate diffuse axonal injury
 - Severe diffuse axonal injury

Focal Brain Injury
- Cerebral Contusion
 - Capillary bleeding into brain tissue
 - Common with blunt head trauma
 - May result from a coup or contrecoup mechanism
 - Localized form of the injury manifests with dysfunctions related to the site of the injury

Focal Brain Injury
- Intracranial Hemorrhage
 - Epidural Hematoma
 - Bleeding between dura mater and skull
 - Involves arteries
 - Middle meningeal artery most common
 - Rapid bleeding and reduction of oxygen to tissues
 - Herniates brain toward foramen magnum
 - Progression is both rapid and life threatening

Focal Brain Injury
- Intracranial Hemorrhage (cont.)
 - Subdural Hematoma
 - Bleeding between meninges
 - Slow bleeding
 - Superior sagittal sinus frequently injured
 - Signs progress over several days
 - Slow deterioration of mentation

Focal Brain Injury
- Intracranial Hemorrhage (cont.)
 - Intracerebral Hemorrhage
 - Ruptured blood vessel within the brain
 - Presentation similar to stroke symptoms
 - Signs and symptoms worsen over time
 - Cerebral edema
 - Inflammatory response allows fluid leakage
 - Hydrocephalus
 - May occur with hemorrhage into the subarachnoid space
Diffuse Brain Injury

- Due to stretching forces placed on axons
- Pathology distributed throughout brain
 - Frequently distributed throughout the brain and thus is called *diffuse axonal injury (DAI)*
- Types
 - Concussion
 - Moderate diffuse axonal injury
 - Severe diffuse axonal injury

Diffuse Brain Injury

- Concussion
 - Mild to moderate form of diffuse axonal injury
 - Nerve dysfunction without anatomic damage
 - Transient episode of
 - Confusion, disorientation, event amnesia
 - Suspect if patient has a momentary loss of consciousness
 - Management
 - Frequent reassessment of mentation
 - ABCs

Diffuse Brain Injury

- Moderate Diffuse Axonal Injury
 - Stretching and tearing of neurons with minute bruising of brain tissue
 - Unconsciousness
 - If cerebral cortex and RAS involved
 - Commonly associated with basilar skull fracture
 - Signs and Symptoms
 - Unconsciousness, persistent confusion, inability to concentrate, disorientation, and retrograde and anterograde amnesia

Diffuse Brain Injury

- Severe Diffuse Axonal Injury
 - Significant mechanical disruption of axons
 - Cerebral hemispheres and brainstem
 - High mortality rate
 - Signs and Symptoms
 - Prolonged unconsciousness
 - Cushing’s reflex
 - Decorticate or decerebrate posturing

Indirect Brain Injury

- Indirect (or secondary) injuries are the result of factors that occur because of, though after, the initial (or primary) injury
- Caused by two distinct pathological processes
 - Diminishing circulation to brain tissue due to an increasing ICP
 - Progressive pressure against, or physical displacement of, brain tissue

Intracranial Perfusion

- Review
 - Cranial volume fixed
 - 80% = Cerebrum, cerebellum, and brainstem
 - 12% = Blood vessels and blood
 - 8% = CSF
 - Increase in size of one component diminishes size of another
 - Inability to adjust = increased ICP
Intracranial Perfusion

- Compensating for Pressure
 - Compress venous blood vessels
 - Reduction in free CSF
 - Pushed into spinal cord
- Decompensating for Pressure
 - Increase in ICP
 - Rise in systemic BP to perfuse brain
 - Further increase of ICP
 - Dangerous cycle

Intracranial Perfusion

- Role of Carbon Dioxide
 - Increase of CO₂ in CSF
 - Cerebral vasodilation
 - Contributes to > ICP
 - Causes classic symptom
 - Hyperventilation and hypertension
 - Reduced levels of CO₂ in CSF
 - Cerebral vasoconstriction
 - Results in cerebral anoxia

Factors Affecting ICP

- Vasculature Constriction
- Cerebral Edema
- Systolic Blood Pressure
 - Low BP = Poor cerebral perfusion
 - High BP = Increased ICP
- Carbon Dioxide
- Reduced respiratory efficiency

Pressure and Structural Displacement

- Increased pressure
 - Compresses brain tissue
 - Herniates brainstem
 - Compromises blood supply
 - Signs and Symptoms
 - Upper brainstem
 - Vomiting
 - Altered mental status
 - Pupillary dilation
 - Medulla oblongata
 - Respiratory
 - Cardiovascular
 - Blood pressure disturbances

Signs and Symptoms of Brain Injury

- Altered Mental Status
 - Altered orientation
 - Alteration in personality
 - Amnesia
 - Retrograde
 - Antegrade
- Cushing’s Reflex
 - Increased BP
 - Bradycardia
 - Erratic respirations
- Vomiting
 - Without nausea
 - Projectile
- Body temperature changes
- Changes in pupil reactivity
- Decorticate posturing

Signs and Symptoms of Brain Injury

- Physiological Changes
 - Frontal Lobe Injury
 - Alterations in personality
 - Occipital Lobe Injury
 - Visual disturbances
 - Cortical Disruption
 - Reduced mental status or amnesia
 - Retrograde
 - Unalbe to recall events before injury
 - Antegrade
 - Unable to recall events after trauma
 - "Repetitive questioning"
 - Focal Deficits
 - Hemiplegia, weakness, or seizures
Central Syndrome

- Progressive pressure and structural displacement are somewhat predictable
 - Known as Central Syndrome
- Physiological Changes
 - Upper Brainstem Compression
 - Increasing blood pressure
 - Reflex bradycardia
 - Vagus nerve stimulation
 - Cheyne-Stokes respirations
 - Pupils become small and reactive
 - Decorticate posturing

Central Syndrome

- Physiological Changes (cont.)
 - Middle Brainstem Compression
 - Widening pulse pressure
 - Increasing bradycardia
 - CNS hyperventilation
 - Bilateral pupil sluggishness or inactivity
 - Decerebrate posturing

Central Syndrome

- Physiological Changes (cont.)
 - Lower Brainstem Injury
 - Pupils dilated and unreactive
 - Ataxic respirations
 - Erratic with no pattern
 - Irregular and erratic pulse rate
 - ECG changes
 - Hypotension
 - Loss of response to painful stimuli

Central Syndrome

- Decerebrate posturing
 - Cushing’s Reflex
 - Increasing blood pressure
 - Decreasing pulse rate
 - Respirations that become erratic
 - Lowering level of consciousness
 - GCS <9 and dropping
 - Singular or bilaterally dilated and fixed pupils
 - Decerebrate or decorticate posturing
 - No movement with noxious stimuli

Recognition of Herniation

- Ataxic respirations

Pediatric Head Trauma

- Different pathology than older patients
 - Skull can distort due to anterior and posterior fontanelles
 - Bulging
 - Slows progression of increasing ICP
 - Intracranial hemorrhage contributes to hypovolemia
 - Decreased blood volume in pediatrics
- General Management
 - Avoid hyperextension of head
 - Tongue pushes soft palate closed
 - Ventilate through mouth and nose

Glasgow Coma Scale

- Standardized evaluation method
 - Used to measure a patient’s level of consciousness
 - Assesses the best eye opening, verbal, and motor response

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Opening</td>
<td>1</td>
</tr>
<tr>
<td>Motor Response</td>
<td>1</td>
</tr>
<tr>
<td>Verbal Response</td>
<td>1</td>
</tr>
<tr>
<td>Total score</td>
<td>3</td>
</tr>
</tbody>
</table>
Eye Signs

- Physiological Issues
 - Indicate pressure on
 - CN-II, CN-III, CN-IV, and CN-VI
 - Reduced peripheral blood flow
- Pupil Size and Reactivity
 - Reduced pupillary responsiveness
 - Depressant drugs or cerebral hypoxia
 - Fixed and dilated
 - Extreme hypoxia

Assessment of Head and Traumatic Brain Injuries

- Assessment follows the standard format
 - Size–up
 - Initial assessment
 - Rapid trauma assessment/focused exam and history
 - Detailed assessment
 - Pay special attention to ensuring airway patency
 - Consider the need for rapid transport

Scene Size-Up

- Consider the circumstances of injury
- Identify the nature and extent of forces that caused the injury
 - Spider–web windshield, deformity of the upper steering wheel, helmet use in motorcycle
- Rule out scene hazards

Initial Assessment

- Airway
 - Examine the face and neck for any deformity, swelling, hemorrhage, foreign bodies, or other signs of injury
 - Listen for unusual or changing voice patterns
 - Anticipate vomiting
 - Suctioning or intubation may worsen ICP

- Breathing
 - Ensure that the patient is moving an adequate volume of air
 - Head injury is likely to produce irregular breathing patterns
 - Ventilations for the serious head injury patient (GCS ≤8) are guided by capnography
 - Maintain an end–tidal CO₂ reading of between 35 and 40 mmHg
 - For patients with suspected herniation, the end–tidal CO₂ reading should range between 30 and 35 mmHg
 - Apply oxygen via nonrebreather mask to the breathing patient
Initial Assessment

- Circulation
 - Monitor the patient’s pulse rate and rhythm
 - Look for any hemorrhage from the head, face, and neck and control any moderate to severe bleeding
 - Maintain a blood pressure of at least 90 mmHg

Rapid Trauma Assessment

- A quick and directed head-to-toe examination of a patient
- Manage any life-threatening injuries and conditions as you find them during the rapid trauma assessment
 - If the patient shows any signs of pathology within the cranium, consider rapid transport

Head, Facial, and Neck Injury Management

- Management priorities for the patient sustaining head, face, or neck trauma include:
 - Maintaining the patient’s airway and breathing
 - Ensuring circulation through hemorrhage control
 - Taking steps to avoid hypoxia and/or hypovolemia
 - ALS—Providing appropriate medications

Head, Facial, and Neck Injury Management

- Airway
 - Patients may be unable to control the airway
 - Altered level of consciousness
 - Damaged airway structures
 - Sellick’s maneuver
 - Suctioning
 - May increase ICP
 - Emesis is common with head injury

Basic Airway Management

- Cricoid pressure
 - Helps prevent regurgitation and reduce gastric distention
 - Applies gentle pressure posteriorly on the anterior cricoid cartilage

Apply cricoid pressure and intubate

- Cricoid pressure
 - Helps prevent regurgitation and reduce gastric distention
 - Applies gentle pressure posteriorly on the anterior cricoid cartilage
Head, Facial, and Neck Injury Management

› Airway (cont.)
 • Patient positioning
 • Initial left-lateral recumbancy with cervical precautions, if possible
 • Approximately 30° elevation of head of spine board
 • Basic airway adjuncts
 • Oro and nasopharyngeal airways
 • Be prepared for emesis

Transport Considerations

› Limit external stimulation
 • Can increase ICP
 • Can induce seizures
› Be cautious about air transport
 • Seizures

Emotional Support

› Have friend or family provide constant reassurance
› Provide constant reorientation to environment if required
 • Keeps patient calm
 • Reduces anxiety

Special Injury Care

› Scalp Avulsion
 • Cover the open wound with bulky dressing
 • Pad under the fold of the scalp
 • Irrigate with NS to remove gross contamination
 • Bandages sometimes hard to keep on head
 • Consider triangular bandage as a “do-rag” to hold dressing in place